주성분 분석또한 가능하다.
> library(datasets) > data(USArrests) > summary(USArrests) Murder Assault UrbanPop Rape Min. : 0.800 Min. : 45.0 Min. :32.00 Min. : 7.30 1st Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07 Median : 7.250 Median :159.0 Median :66.00 Median :20.10 Mean : 7.788 Mean :170.8 Mean :65.54 Mean :21.23 3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18
> fit <- princomp(USArrests, cor=TRUE)
> fit
Call:
princomp(x = USArrests, cor = TRUE)
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
1.5748783 0.9948694 0.5971291 0.4164494
4 variables and 50 observations.
> summary(fit)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.5748783 0.9948694 0.5971291 0.41644938
Proportion of Variance 0.6200604 0.2474413 0.0891408 0.04335752
Cumulative Proportion 0.6200604 0.8675017 0.9566425 1.00000000
> loadings(fit)
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
Murder -0.536 0.418 -0.341 0.649
Assault -0.583 0.188 -0.268 -0.743
UrbanPop -0.278 -0.873 -0.378 0.134
Rape -0.543 -0.167 0.818
Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00
> plot(fit, type="lines")
> biplot(fit)
> p1 = prcomp(data, scale=TRUE)
'데이터분석 > Machine Learning' 카테고리의 다른 글
R에서 분류분석 (랜덤포레스트, ROCR) (0) | 2016.01.12 |
---|---|
R에서 SQL 기능 이용 예 (0) | 2016.01.11 |
R을 이용한 다차원 분석 예 (0) | 2016.01.10 |
R을 이용한 ARIMA(Autoregressive integrated moving average) 분석 예 (0) | 2016.01.10 |
R을 이용한 시계열분석 함수 이용 예 (0) | 2016.01.10 |