This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import keras | |
from keras.models import Sequential | |
from keras.layers import Dense | |
dataset = pd.read_csv("diabetes.csv") | |
data = dataset.as_matrix() | |
x_train = data[:700, 0:8] | |
y_train = data[:700, 8] | |
x_test = data[700:, 0:8] | |
y_test = data[700:, 8] | |
model = Sequential() | |
model.add(Dense(12, input_dim = 8, activation = 'relu')) | |
model.add(Dense(8, activation = 'relu')) | |
model.add(Dense(1, activation = 'sigmoid')) | |
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) | |
model.fit(x_train, y_train, epochs=1500, batch_size=64) | |
scores = model.evaluate(x_test, y_test) | |
print("%s: %.2f%%" %(model.metrics_names[1], scores[1]* 100)) |
Epoch 1491/1500 700/700 [==============================] - 0s 24us/step - loss: 0.4035 - acc: 0.7929 Epoch 1492/1500 700/700 [==============================] - 0s 29us/step - loss: 0.4029 - acc: 0.8057 Epoch 1493/1500 700/700 [==============================] - 0s 30us/step - loss: 0.4099 - acc: 0.8014 Epoch 1494/1500 700/700 [==============================] - 0s 25us/step - loss: 0.4171 - acc: 0.7943 Epoch 1495/1500 700/700 [==============================] - 0s 26us/step - loss: 0.4090 - acc: 0.7971 Epoch 1496/1500 700/700 [==============================] - 0s 24us/step - loss: 0.4024 - acc: 0.7971 Epoch 1497/1500 700/700 [==============================] - 0s 29us/step - loss: 0.4024 - acc: 0.8057 Epoch 1498/1500 700/700 [==============================] - 0s 24us/step - loss: 0.4057 - acc: 0.7971 Epoch 1499/1500 700/700 [==============================] - 0s 21us/step - loss: 0.4123 - acc: 0.7971 Epoch 1500/1500 700/700 [==============================] - 0s 23us/step - loss: 0.4016 - acc: 0.7957 68/68 [==============================] - 0s 1ms/step acc: 79.41%
'데이터분석 > Deep Learning' 카테고리의 다른 글
windows10 tensorflow-gpu 설치 (1) | 2018.10.14 |
---|---|
keras image_data_format (0) | 2018.10.09 |
[Link] 강화학습 관련 링크 (0) | 2017.12.03 |
stanford univ. css231n lecture - (1) Image Classification (0) | 2017.11.26 |
Deep Learning 개발 라이브러리 장단점 (0) | 2017.11.14 |