gensim word2vec simple usage
from gensim.models import word2vec token = [['나는','너를', '사랑해'],['나도','너를','사랑해']] embedding = word2vec.Word2Vec(token, size=5, window=1, negative=3, min_count=1) embedding.save('model') #모델 저장embedding.wv.save_word2vec_format('my.embedding', binary=False) #모델 저장 embedding.wv['너를'] embedding.most_similar('너를') from gensim.models.keyedvectors import KeyedVectorsembedding.wv.save_word2vec_format('m..